source

C 콘솔에 바이너리 트리를 그리는 방법

goodcode 2022. 9. 5. 22:58
반응형

C 콘솔에 바이너리 트리를 그리는 방법

콘솔에서 바이너리 트리를 그릴 때 사용할 수 있는 알고리즘은 무엇입니까?트리는 C에서 구현됩니다.예를 들어 번호가 2 3 4 5 8인 BST는 콘솔에 다음과 같이 표시됩니다.

텍스트alt

ASCII로 바이너리 트리 인쇄 확인

아래의 @AnyOneElse Pastbin에서:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!Code originally from /http://www.openasthra.com/c-tidbits/printing-binary-trees-in-ascii/
!!! Just saved it, cause the website is down.
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Printing Binary Trees in Ascii

Here we are not going to discuss what binary trees are (please refer this, if you are looking for binary search trees), or their operations but printing them in ascii.

The below routine prints tree in ascii for a given Tree representation which contains list of nodes, and node structure is this

    struct Tree 
    {
      Tree * left, * right;
      int element;
    };

This pic illustrates what the below routine does on canvas..
ascii tree

Here is the printing routine..

    b5855d39a6b8a2735ddcaa04a404c125001 

Auxiliary routines..

    //This function prints the given level of the given tree, assuming
    //that the node has the given x cordinate.
    void print_level(asciinode *node, int x, int level) 
    {
      int i, isleft;
      if (node == NULL) return;
      isleft = (node->parent_dir == -1);
      if (level == 0) 
      {
        for (i=0; i<(x-print_next-((node->lablen-isleft)/2)); i++) 
        {
          printf(" ");
        }
        print_next += i;
        printf("%s", node->label);
        print_next += node->lablen;
      } 
      else if (node->edge_length >= level) 
      {
        if (node->left != NULL) 
        {
          for (i=0; i<(x-print_next-(level)); i++) 
          {
            printf(" ");
          }
          print_next += i;
          printf("/");
          print_next++;
        }
        if (node->right != NULL) 
        {
          for (i=0; i<(x-print_next+(level)); i++) 
          {
            printf(" ");
          }
          print_next += i;
          printf("\\");
          print_next++;
        }
      } 
      else 
      {
        print_level(node->left, 
                    x-node->edge_length-1, 
                    level-node->edge_length-1);
        print_level(node->right, 
                    x+node->edge_length+1, 
                    level-node->edge_length-1);
      }
    }


    //This function fills in the edge_length and 
    //height fields of the specified tree
    void compute_edge_lengths(asciinode *node) 
    {
      int h, hmin, i, delta;
      if (node == NULL) return;
      compute_edge_lengths(node->left);
      compute_edge_lengths(node->right);

      /* first fill in the edge_length of node */
      if (node->right == NULL && node->left == NULL) 
      {
        node->edge_length = 0;
      } 
      else 
      {
        if (node->left != NULL) 
        {
          for (i=0; i<node->left->height && i < MAX_HEIGHT; i++) 
          {
            rprofile[i] = -INFINITY;
          }
          compute_rprofile(node->left, 0, 0);
          hmin = node->left->height;
        } 
        else 
        {
          hmin = 0;
        }
        if (node->right != NULL) 
        {
          for (i=0; i<node->right->height && i < MAX_HEIGHT; i++) 
          {
            lprofile[i] = INFINITY;
          }
          compute_lprofile(node->right, 0, 0);
          hmin = MIN(node->right->height, hmin);
        } 
        else 
        {
          hmin = 0;
        }
        delta = 4;
        for (i=0; i<hmin; i++) 
        {
          delta = MAX(delta, gap + 1 + rprofile[i] - lprofile[i]);
        }

        //If the node has two children of height 1, then we allow the
        //two leaves to be within 1, instead of 2 
        if (((node->left != NULL && node->left->height == 1) ||
              (node->right != NULL && node->right->height == 1))&&delta>4) 
        {
          delta--;
        }

        node->edge_length = ((delta+1)/2) - 1;
      }

      //now fill in the height of node
      h = 1;
      if (node->left != NULL) 
      {
        h = MAX(node->left->height + node->edge_length + 1, h);
      }
      if (node->right != NULL) 
      {
        h = MAX(node->right->height + node->edge_length + 1, h);
      }
      node->height = h;
    }

    asciinode * build_ascii_tree_recursive(Tree * t) 
    {
      asciinode * node;

      if (t == NULL) return NULL;

      node = malloc(sizeof(asciinode));
      node->left = build_ascii_tree_recursive(t->left);
      node->right = build_ascii_tree_recursive(t->right);

      if (node->left != NULL) 
      {
        node->left->parent_dir = -1;
      }

      if (node->right != NULL) 
      {
        node->right->parent_dir = 1;
      }

      sprintf(node->label, "%d", t->element);
      node->lablen = strlen(node->label);

      return node;
    }


    //Copy the tree into the ascii node structre
    asciinode * build_ascii_tree(Tree * t) 
    {
      asciinode *node;
      if (t == NULL) return NULL;
      node = build_ascii_tree_recursive(t);
      node->parent_dir = 0;
      return node;
    }

    //Free all the nodes of the given tree
    void free_ascii_tree(asciinode *node) 
    {
      if (node == NULL) return;
      free_ascii_tree(node->left);
      free_ascii_tree(node->right);
      free(node);
    }

    //The following function fills in the lprofile array for the given tree.
    //It assumes that the center of the label of the root of this tree
    //is located at a position (x,y).  It assumes that the edge_length
    //fields have been computed for this tree.
    void compute_lprofile(asciinode *node, int x, int y) 
    {
      int i, isleft;
      if (node == NULL) return;
      isleft = (node->parent_dir == -1);
      lprofile[y] = MIN(lprofile[y], x-((node->lablen-isleft)/2));
      if (node->left != NULL) 
      {
        for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++) 
        {
          lprofile[y+i] = MIN(lprofile[y+i], x-i);
        }
      }
      compute_lprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
      compute_lprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
    }

    void compute_rprofile(asciinode *node, int x, int y) 
    {
      int i, notleft;
      if (node == NULL) return;
      notleft = (node->parent_dir != -1);
      rprofile[y] = MAX(rprofile[y], x+((node->lablen-notleft)/2));
      if (node->right != NULL) 
      {
        for (i=1; i <= node->edge_length && y+i < MAX_HEIGHT; i++) 
        {
          rprofile[y+i] = MAX(rprofile[y+i], x+i);
        }
      }
      compute_rprofile(node->left, x-node->edge_length-1, y+node->edge_length+1);
      compute_rprofile(node->right, x+node->edge_length+1, y+node->edge_length+1);
    }

Here is the asciii tree structure…

    struct asciinode_struct
    {
      asciinode * left, * right;

      //length of the edge from this node to its children
      int edge_length; 

      int height;      

      int lablen;

      //-1=I am left, 0=I am root, 1=right   
      int parent_dir;   

      //max supported unit32 in dec, 10 digits max
      char label[11];  
    };

출력:

        2
       / \
      /   \
     /     \
    1       3
   / \     / \
  0   7   9   1
 /   / \     / \
2   1   0   8   8
       /
      7

코드:

int _print_t(tnode *tree, int is_left, int offset, int depth, char s[20][255])
{
    char b[20];
    int width = 5;

    if (!tree) return 0;

    sprintf(b, "(%03d)", tree->val);

    int left  = _print_t(tree->left,  1, offset,                depth + 1, s);
    int right = _print_t(tree->right, 0, offset + left + width, depth + 1, s);

#ifdef COMPACT
    for (int i = 0; i < width; i++)
        s[depth][offset + left + i] = b[i];

    if (depth && is_left) {

        for (int i = 0; i < width + right; i++)
            s[depth - 1][offset + left + width/2 + i] = '-';

        s[depth - 1][offset + left + width/2] = '.';

    } else if (depth && !is_left) {

        for (int i = 0; i < left + width; i++)
            s[depth - 1][offset - width/2 + i] = '-';

        s[depth - 1][offset + left + width/2] = '.';
    }
#else
    for (int i = 0; i < width; i++)
        s[2 * depth][offset + left + i] = b[i];

    if (depth && is_left) {

        for (int i = 0; i < width + right; i++)
            s[2 * depth - 1][offset + left + width/2 + i] = '-';

        s[2 * depth - 1][offset + left + width/2] = '+';
        s[2 * depth - 1][offset + left + width + right + width/2] = '+';

    } else if (depth && !is_left) {

        for (int i = 0; i < left + width; i++)
            s[2 * depth - 1][offset - width/2 + i] = '-';

        s[2 * depth - 1][offset + left + width/2] = '+';
        s[2 * depth - 1][offset - width/2 - 1] = '+';
    }
#endif

    return left + width + right;
}

void print_t(tnode *tree)
{
    char s[20][255];
    for (int i = 0; i < 20; i++)
        sprintf(s[i], "%80s", " ");

    _print_t(tree, 0, 0, 0, s);

    for (int i = 0; i < 20; i++)
        printf("%s\n", s[i]);
}

출력:

                           .----------------------(006)-------.                 
                      .--(001)-------.                   .--(008)--.            
                 .--(-02)       .--(003)-------.       (007)     (009)          
       .-------(-06)          (002)       .--(005)                              
  .--(-08)--.                           (004)                                   
(-09)     (-07)                     

또는

                                                  (006)                         
                           +------------------------+---------+                 
                         (001)                              (008)               
                      +----+---------+                   +----+----+            
                    (-02)          (003)               (007)     (009)          
                 +----+         +----+---------+                                
               (-06)          (002)          (005)                              
       +---------+                        +----+                                
     (-08)                              (004)                                   
  +----+----+                                                                   
(-09)     (-07)                                                       

몇 가지 힌트: 같은 깊이의 노드 간 간격(예: 예에서는 2와 4 또는 3과 8)은 깊이의 함수입니다.

인쇄된 각 행은 가장 왼쪽 노드에서 가장 오른쪽 노드로 인쇄된 동일한 깊이의 모든 노드로 구성됩니다.

예를 들어 노드를 깊이별로 왼쪽 끝의 순서로 배열하는 방법이 필요합니다.

루트 노드부터 시작하여 너비 우선 검색이 깊이와 왼쪽 끝의 순서로 노드를 방문합니다.

노드 간 간격은 트리의 최대 높이를 찾고, 가장 깊은 노드에 일정한 폭을 사용하고, 더 작은 모든 깊이에 대해 해당 폭을 두 배로 하여 모든 깊이 = ( 1 + maxdepth - currentdepth ) * 가장 깊은 깊이의 폭을 구하면 알 수 있습니다.

이 수치는 특정 깊이에서 각 노드의 인쇄된 "수평 폭"을 제공합니다.

왼쪽 노드는 부모 폭의 왼쪽 절반, 오른쪽 절반의 오른쪽 절반에 수평으로 위치한다.상위 노드가 없는 노드에 더미 스페이서를 삽입합니다.이러한 방법은 모든 리프가 가장 깊은 노드와 같은 깊이에 있는지 확인하고 값을 공백으로 하는 것입니다.값의 폭도 보정해야 합니다.아마도 가장 큰 값의 노드의 인쇄된 폭(아마도 10진수 표현)과 같은 폭일 것입니다.

트리가 어레이에 실장되어 있는 경우의 예를 다음에 제시하겠습니다.

#include <stdio.h>
#include <math.h>


#define PARENT(i) ((i-1) / 2)
#define NUM_NODES 15
#define LINE_WIDTH 70

int main() {
    int tree[NUM_NODES]={0,1,2,3,4,5,6,7,8,9,1,2,3,4,5};
    int print_pos[NUM_NODES];
    int i, j, k, pos, x=1, level=0;

    print_pos[0] = 0;
    for(i=0,j=1; i<NUM_NODES; i++,j++) {
        pos = print_pos[PARENT(i)] + (i%2?-1:1)*(LINE_WIDTH/(pow(2,level+1))+1);

        for (k=0; k<pos-x; k++) printf("%c",i==0||i%2?' ':'-');
        printf("%d",tree[i]);

        print_pos[i] = x = pos+1;
        if (j==pow(2,level)) {
            printf("\n");
            level++;
            x = 1;
            j = 0;
        }
    }
    return 0;
}

출력:

                                   0
                  1-----------------------------------2
          3-----------------4                 5-----------------6
      7---------8       9---------1       2---------3       4---------5

나는 이 작은 용액을 c++로 가지고 있다 - 그것은 쉽게 c로 변환될 수 있다.

현재 노드의 깊이를 트리 내에 저장하기 위해 추가 데이터 구조가 필요합니다(불완전한 트리로 작업하는 경우 지정된 서브 트리의 깊이가 전체 트리의 깊이와 일치하지 않을 수 있습니다).

#include <iostream>
#include <utility>
#include <algorithm>
#include <list>

namespace tree {

template<typename T>
struct node
{
  T data;
  node* l;
  node* r;
  node(T&& data_ = T()) : data(std::move(data_)), l(0), r(0) {}
};

template<typename T>
int max_depth(node<T>* n)
{
  if (!n) return 0;
  return 1 + std::max(max_depth(n->l), max_depth(n->r));
}

template<typename T>
void prt(node<T>* n)
{
  struct node_depth
  {
    node<T>* n;
    int lvl;
    node_depth(node<T>* n_, int lvl_) : n(n_), lvl(lvl_) {}
  };

  int depth = max_depth(n);

  char buf[1024];
  int last_lvl = 0;
  int offset = (1 << depth) - 1;

  // using a queue means we perform a breadth first iteration through the tree
  std::list<node_depth> q;

  q.push_back(node_depth(n, last_lvl));
  while (q.size())
  {
    const node_depth& nd = *q.begin();

    // moving to a new level in the tree, output a new line and calculate new offset
    if (last_lvl != nd.lvl)
    {
      std::cout << "\n";

      last_lvl = nd.lvl;
      offset = (1 << (depth - nd.lvl)) - 1;
    }

    // output <offset><data><offset>
    if (nd.n)
      sprintf(buf, " %*s%d%*s", offset, " ", nd.n->data, offset, " ");
    else
      sprintf(buf, " %*s", offset << 1, " ");
    std::cout << buf;

    if (nd.n)
    {
      q.push_back(node_depth(nd.n->l, last_lvl + 1));
      q.push_back(node_depth(nd.n->r, last_lvl + 1));
    }

    q.pop_front();
  }
  std::cout << "\n";
}

}

int main()
{
  typedef tree::node<int> node;
  node* head = new node();
  head->l    = new node(1);
  head->r    = new node(2);
  head->l->l = new node(3);
  head->l->r = new node(4);
  head->r->l = new node(5);
  head->r->r = new node(6);

  tree::prt(head);

  return 0;
}

다음의 출력이 됩니다.

        0                                                                                                
    1       2                                                                                            
  3   4   5   6                                                                                          

Linux에서의 pstree 명령어의 출력을 확인합니다.원하는 형태로 출력되지 않지만 IMHO가 더 잘 읽을 수 있습니다.

두 번째 추천입니다.최근에 Windows 프로세스의 VAD 트리를 인쇄하기 위해 이 작업을 수행해야 했고 DOT 언어를 사용했습니다(바이너리 트리 워킹 기능에서 노드를 인쇄하기만 하면 됩니다).

http://en.wikipedia.org/wiki/DOT_language

예를 들어, DOT 파일에는 다음이 포함됩니다.

digraph 그래프 이름 {5 -> 3;5 -> 8;3 -> 4;3 -> 2;}

도트를 사용하여 그래프를 생성합니다.또는 dot.exe를 사용하여 PNG로 변환합니다.

매우 간단한 C++ 솔루션 가로 방향 인쇄 트리:

5
  1
    5
  9
    7
    14

드드(()Node::print()★★★★★★★★★★★★★★★★★★★★★」

#include<iostream>

using namespace std;

class Tree;

class Node{
public:
    Node(int val): _val(val){}
    int val(){ return _val; }
    void add(Node *temp)
    {
        if (temp->val() > _val)
        {
            if (_rchild)
                _rchild->add(temp);
            else
            {
                _rchild = temp;
            }
        }
        else
        {
            if (_lchild)
                _lchild->add(temp);
            else
            {
                _lchild = temp;
            }
        }
    }
    void print()
    {
        for (int ix = 0; ix < _level; ++ix) cout << ' ';
        cout << _val << endl;
        ++_level;
        if (_lchild)
        {
            _lchild->print();
            --_level;
        }
        if (_rchild)
        {
            _rchild->print();
            --_level;
        }
    }
private:
    int _val;
    Node *_lchild;      
    Node *_rchild;
    static int _level;      
};

int Node::_level = 0;       

class Tree{
public:
    Tree(): _root(0){}  
    void add(int val)
    {
        Node *temp = new Node(val);
        if (!_root)
            _root = temp;
        else
            _root->add(temp);       
    }
    void print()
    {
        if (!_root)
            return;
        _root->print();             
    }
private:
    Node *_root;    
};

int main()
{
    Tree tree;
    tree.add(5);
    tree.add(9);
    tree.add(1);
    tree.add(7);
    tree.add(5);
    tree.add(14);
    tree.print();
}

직접 코드화하지 말고 트리를 보세요.: Perl 구현에 적합한 것처럼 보이는 스타일을 시각화하고 알고리즘 중 하나를 사용합니다.

여기에서는 바이너리 트리의 각 노드가 그려져야 할 좌표를 계산하는 루비 프로그램을 사용하고 있습니다.http://hectorcorrea.com/Blog/Drawing-a-Binary-Tree-in-Ruby

이 코드는 매우 기본적인 알고리즘을 사용하여 좌표를 계산하며 "면적 효율"은 아니지만 좋은 시작입니다.코드 「live」를 참조하려면 , http://binarytree.heroku.com/ 를 사용해 테스트합니다.

언급URL : https://stackoverflow.com/questions/801740/c-how-to-draw-a-binary-tree-to-the-console

반응형